Hydrodynamics of Superfluid Bose Gases in an Optical Lattice at Finite Temperatures
نویسندگان
چکیده
Starting from an effective action for the order parameter field, we derive a coupled set of generalized hydrodynamic equations for a Bose condensate in an optical lattice at finite temperatures. Using the linearized hydrodynamic equations, we study the microscopic mechanism of the Landau instability due to the collisional damping process between condensate and noncondensate atoms. It is shown that the Landau criterion of the superfluidity for the uniform system is modified due to the presence of the periodic optical lattice potential.
منابع مشابه
Two-Fluid Hydrodynamics in Trapped Bose Gases and in Superfluid Helium
A review is given of recent theoretical work on the superfluid dynamics of trapped Bose gases at finite temperatures, where there is a significant fraction of non-condensate atoms. One can now reach large enough densities and collision cross-sections needed to probe the collective modes in the collisiondominated hydrodynamic region where the gas exhibits characteristic superfluid behavior invol...
متن کاملAtomic Bose and Anderson glasses in optical lattices.
An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a nonco...
متن کاملHeavily damped motion of one-dimensional Bose gases in an optical lattice.
We study the dynamics of strongly correlated one-dimensional Bose gases in a combined harmonic and optical lattice potential subjected to sudden displacement of the confining potential. Using the time-evolving block decimation method, we perform a first-principles quantum many-body simulation of the experiment of Fertig et al. [Phys. Rev. Lett. 94, 120403 (2005)] across different values of the ...
متن کاملSuperfluid fermi gas in a 1D optical lattice.
We calculate the superfluid transition temperature for a two-component 3D Fermi gas in a 1D tight optical lattice and discuss a dimensional crossover from the 3D to quasi-2D regime. For the geometry of finite size discs in the 1D lattice, we find that even for a large number of atoms per disc the critical effective tunneling rate for a quantum transition to the Mott insulator state can be large...
متن کاملCritical temperature of interacting Bose gases in periodic potentials.
The superfluid transition of a repulsive Bose gas in the presence of a sinusoidal potential which represents a simple-cubic optical lattice is investigated using quantum Monte Carlo simulations. At the average filling of one particle per well the critical temperature has a nonmonotonic dependence on the interaction strength, with an initial sharp increase and a rapid suppression at strong inter...
متن کامل